Non-Conforming Finite Element Methods for Nonmatching Grids in Three Dimensions
نویسندگان
چکیده
In the last decade, non-conforming domain decomposition methods such as the mortar finite element method have been shown to be reliable techniques for several engineering applications that often employ complex finite element design. With this technique, one can conveniently assemble local subcomponents into a global domain without matching the finite element nodes of each subcomponent at the common interface. In this work, we present computational results for the convergence of a mortar finite element technique in three dimensions for a model problem. We employ the mortar finite element formulation in conjunction with higher-order elements, where both mesh refinement and degree enhancement are combined to increase accuracy. Our numerical results demonstrate optimality for the resulting non-conforming method for various discretizations.
منابع مشابه
A conforming finite element method for overlapping and nonmatching grids
In this paper we propose a finite element method for nonmatching overlapping grids based on the partition of unity. Both overlapping and nonoverlapping cases are considered. We prove that the new method admits an optimal convergence rate. The error bounds are in terms of local mesh sizes and they depend on neither the overlapping size of the subdomains nor the ratio of the mesh sizes from diffe...
متن کاملA general framework for multigrid methods for mortar finite elements
In this paper, a general framework for the analysis of multigrid methods for mortar finite elements is considered. The numerical realization is based on the algebraic saddle point formulation arising from the discretization of second order elliptic equations on nonmatching grids. Suitable discrete Lagrange multipliers on the interface guarantee weak continuity and an optimal discretization sche...
متن کاملMixed Finite Element Methods on Nonmatching Multiblock Grids
We consider mixed nite element methods for second order elliptic equations on non-matching multiblock grids. A mortar nite element space is introduced on the non-matching interfaces. We approximate in this mortar space the trace of the solution, and we impose weakly a continuity of ux condition. A standard mixed nite element method is used within the blocks. Optimal order convergence is shown f...
متن کاملAdditive Schwarz methods for the Crouzeix-Raviart mortar finite element for elliptic problems with discontinuous coefficients
In this paper, we propose two variants of the additive Schwarz method for the approximation of second order elliptic boundary value problems with discontinuous coefficients, on nonmatching grids using the lowest order Crouzeix-Raviart element for the discretization in each subdomain. The overall discretization is based on the mortar technique for coupling nonmatching grids. The convergence beha...
متن کاملA Finite Element Method for Domain Decomposition with Non-matching Grids
Abstract. In this note, we propose and analyse a method for handling interfaces between nonmatching grids based on an approach suggested by Nitsche (1971) for the approximation of Dirichlet boundary conditions. The exposition is limited to self-adjoint elliptic problems, using Poisson’s equation as a model. A priori and a posteriori error estimates are given. Some numerical results are included.
متن کامل